Q.PEAK DUO RSF XL-G11S SERIES

585-600 Wp | 156 Cells 21.5% Maximum Module Efficiency

MODEL Q.PEAK DUO RSF XL-G11S.3/BFG

Fast installation

Innovative S shape frame design including perfectly matched clamps, bringing innovation and convenience together for effortless setup.

Increased design loads for short rails

Unlock unparalleled strength with Qcells steel frames for cost-effective tracker mounting

Bifacial energy yield gain of up to 20%

Bifacial Q.ANTUM solar cells make efficient use of light shining on the module rear-side for radically improved LCOE.

A reliable investment

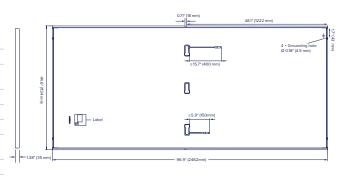
Double glass module with Anti LID and Anti PID Technology¹ enables long-term yield security for an extended lifetime backed by a 30-year performance warranty².

Lowering carbon emission

High tech steel frame module generates significantly less CO2 pollution than standard aluminum frame.

Enhanced bifaciality and self cleaning

Optimized frame shape reducing rear side shading and drainage slot for reducing soiling loss.



 $^{^1}$ APT test conditions according to IEC/TS 62804-1:2015 method B (–1500 V, 168 h) including post treatment according to IEC 61215-1-1 Ed. 2.0 (CD)

² See data sheet on rear for further information

■ Mechanical Specification

Format	96.9 in × 44.6 in × 1.38 in (including frame) (2462 mm × 1134 mm × 35 mm)
Weight	80.2 lbs (36.4 kg)
Front Cover	0.08 in (2.0 mm) thermally pre-stressed glass with anti-reflection technology
Back Cover	0.08 in (2.0 mm) semi-tempered glass
Frame	Steel (Zn-Al-Mg coating)
Cell	6 × 26 monocrystalline Q.ANTUM solar half cells
Junction box	$2.09-3.98 \times 1.26-2.36 \times 0.59-0.71$ in (53-101 mm \times 32-60 mm \times 15-18 mm), Protection class IP68, with bypass diodes
Cable	$4 \text{ mm}^2 \text{ Solar cable; (+)} \ge 15.7 \text{ in (400 mm), (-)} \ge 5.9 \text{ in (150 mm)}$
Connector	Stäubli MC4; Stäubli MC4-Evo2; - IP68

■ Electrical Characteristics

POWER CLASS				585		590		595		600	
MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC1 (POWER TOLERANCE +5 W/-0 W))				
					BSTC*		BSTC*		BSTC*		BSTC*
	Power at MPP ¹	P _{MPP}	[W]	585	639.9	590	645.4	595	650.8	600	656.3
Minimum	Short Circuit Current ¹	I _{sc}	[A]	13.72	15.01	13.74	15.04	13.77	15.07	13.80	15.10
	Open Circuit Voltage ¹	V _{oc}	[V]	53.57	53.76	53.60	53.79	53.63	53.82	53.66	53.85
	Current at MPP	I _{MPP}	[A]	13.07	14.30	13.12	14.36	13.17	14.41	13.22	14.46
	Voltage at MPP	V _{MPP}	[V]	44.75	44.74	44.96	44.95	45.18	45.17	45.39	45.38
	Efficiency ¹	η	[%]	≥21.0		≥ 21.1		≥21.3		≥21.5	

 $Bifaciality\ of\ P_{MPP}\ and\ I_{SC}\ 72\ \%\ \pm 5\%\ \bullet\ Bifaciality\ given\ for\ rear\ side\ irradiation\ on\ top\ of\ STC\ (front\ side)\ \bullet\ According\ to\ IEC\ 60904-1-2\ (front\ side)\ According\ t$

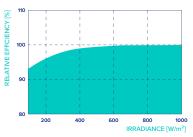

 $^{1}\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; I_{\text{SC}}, V_{\text{OC}} \pm 5\% \text{ at STC: } 1000 \, \text{W/m}^2; \\ ^{*}\text{at BSTC: } 1000 \, \text{W/m}^2 + \phi \times 135 \, \text{W/m}^2, \\ \phi = 70\%, 25 \pm 2 \, ^{\circ}\text{C}, \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 1000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 10000 \, \text{W/m}^2; \\ \text{AM 1.5 according to IEC 60904-3} \times 10000 \, \text{W/m}^2; \\ \text{$

MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT²

Minimum	Power at MPP	P_{MPP}	[W]	440.5	444.2	448.0	451.8	
	Short Circuit Current	I _{sc}	[A]	11.05	11.07	11.09	11.11	
	Open Circuit Voltage	V _{oc}	[V]	50.67	50.69	50.72	50.75	
	Current at MPP	I _{MPP}	[A]	10.30	10.34	10.38	10.42	
	Voltage at MPP	V _{MPP}	[V]	42.79	42.97	43.15	43.34	

 $^{1}\text{Measurement tolerances P}_{\text{MPP}}\pm3\%; I_{\text{SC}}; V_{\text{OC}}\pm5\% \text{ at STC: }1000 \text{W/m}^{2}, 25\pm2\text{°C}, \text{AM 1.5 according to IEC }60904-3 \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC }60904-3 \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 } 1000 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 } 10000 \text{W/m}^{2},$

Qcells PERFORMANCE WARRANTY



At least 98% of nominal power during first year. Thereafter max. 0.45% degradation per year. At least 93.95% of nominal power up to 10 years. At least 84.95% of nominal power up to 30 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Qcells sales organisation of your respective country.

*Standard terms of guarantee for the 5 PV companies with the highest production capacity in 2021 (February 2021)

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 $^{\circ}$ C, 1000 W/m²).

TEMPERATURE COEFFICIENTS				
Tomporature Coefficient of I				

Temperature Coefficient of I _{sc}	α	[%/K]	+0.04	Temperature Coefficient of V _{oc}	β	[%/K]	-0.27
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.34	Nominal Module Operating Temperature	NMOT	[°F]	108±5.4 (42±3°C)

■ Properties for System Design

Maximum System Voltage	$\mathbf{V}_{\mathrm{sys}}$	[V]	1500
Maximum Series Fuse Rating		[A DC]	25
Max. Push Load ³ , Test/ Design		[lbs/ft²]	54 (2600 Pa)/36 (1700 Pa)
Max Pull Load ³ Test/Design		[lbs/ft²]	63 (3000 Pa)/42 (2000 Pa)

³ See Installation Manual for instructions

PV module classification	Class II
Fire Rating based on ANSI/UL 61730	TYPE 29 ⁴
Permitted Module Temperature	−40°F up to +185°F
on Continuous Duty	(-40°C up to +85°C)

⁴ New Type is similar to Type 3 but with metallic frame

■ Qualifications and Certificates

UL 61730, CE-compliant, IEC 61215:2016, IEC 61730:2016, U.S. Patent No. 9,893,215 (solar cells)

